Goto

Collaborating Authors

 Hudson County


Uber teams with Avride to offer self-driving vehicles for rides and food deliveries

Engadget

Uber has entered a new deal to offer customers in select cities an option for self-driving vehicles. The partnership is with Avride, which used to be the self-driving unit for Russian conglomerate Yandex. The multi-year deal will begin by introducing Avride's self-driving robots as a delivery option for Uber Eats orders in Austin, Texas. Later this year, the robots are expected to become available for delivery orders in Dallas and Jersey City, New Jersey. Autonomous driving is slated to begin service for Uber ride requests in Dallas in 2025. It will only be an option for "qualifying orders" on either Uber or Uber Eats, but the company didn't specify what those qualifications are.


Robustness and risk-sensitivity in Markov decision processes

Neural Information Processing Systems

We uncover relations between robust MDPs and risk-sensitive MDPs. The objective of a robust MDP is to minimize a function, such as the expectation of cumulative cost, for the worst case when the parameters have uncertainties. The objective of a risk-sensitive MDP is to minimize a risk measure of the cumulative cost when the parameters are known. We show that a risk-sensitive MDP of minimizing the expected exponential utility is equivalent to a robust MDP of minimizing the worst-case expectation with a penalty for the deviation of the uncertain parameters from their nominal values, which is measured with the Kullback-Leibler divergence. We also show that a risk-sensitive MDP of minimizing an iterated risk measure that is composed of certain coherent risk measures is equivalent to a robust MDP of minimizing the worst-case expectation when the possible deviations of uncertain parameters from their nominal values are characterized with a concave function.


Atmosphere: Context and situational-aware collaborative IoT architecture for edge-fog-cloud computing

arXiv.org Artificial Intelligence

The Internet of Things (IoT) has grown significantly in popularity, accompanied by increased capacity and lower cost of communications, and overwhelming development of technologies. At the same time, big data and real-time data analysis have taken on great importance and have been accompanied by unprecedented interest in sharing data among citizens, public administrations and other organisms, giving rise to what is known as the Collaborative Internet of Things. This growth in data and infrastructure must be accompanied by a software architecture that allows its exploitation. Although there are various proposals focused on the exploitation of the IoT at edge, fog and/or cloud levels, it is not easy to find a software solution that exploits the three tiers together, taking maximum advantage not only of the analysis of contextual and situational data at each tier, but also of two-way communications between adjacent ones. In this paper, we propose an architecture that solves these deficiencies by proposing novel technologies which are appropriate for managing the resources of each tier: edge, fog and cloud. In addition, the fact that two-way communications along the three tiers of the architecture is allowed considerably enriches the contextual and situational information in each layer, and substantially assists decision making in real time. The paper illustrates the proposed software architecture through a case study of respiratory disease surveillance in hospitals. As a result, the proposed architecture permits efficient communications between the different tiers responding to the needs of these types of IoT scenarios.


Fox News AI Newsletter: Tech to streamline your commute

FOX News

The New York City skyline is seen Aug. 17, 2022, from Jersey City, New Jersey. STREAMLINE YOUR COMMUTE: New AI-powered tech could ease traffic jams. JOB THREAT: New tech could make wide range of high-skilled work'obsolete': expert. 'HUMAN' ELEMENT': Hollywood execs warn AI could steal jobs of true artists. DOUBLE TAKE: Americans worry these'creepy' deepfakes will manipulate people in 2024 election, 'disturbingly false.' Continue reading… PLAGIARISM PROBE: Business leader Bill Ackman calls for AI review of MIT leaders, faculty.


Opportunities and Challenges to Integrate Artificial Intelligence into Manufacturing Systems: Thoughts from a Panel Discussion

arXiv.org Artificial Intelligence

Rapid advances in artificial intelligence (AI) have the potential to significantly increase the productivity, quality, and profitability in future manufacturing systems. Traditional mass-production will give way to personalized production, with each item made to order, at the low cost and high-quality consumers have come to expect. Manufacturing systems will have the intelligence to be resilient to multiple disruptions, from small-scale machine breakdowns, to large-scale natural disasters. Products will be made with higher precision and lower variability. While gains have been made towards the development of these factories of the future, many challenges remain to fully realize this vision. To consider the challenges and opportunities associated with this topic, a panel of experts from Industry, Academia, and Government was invited to participate in an active discussion at the 2022 Modeling, Estimation and Control Conference (MECC) held in Jersey City, New Jersey from October 3- 5, 2022. The panel discussion focused on the challenges and opportunities to more fully integrate AI into manufacturing systems. Three overarching themes emerged from the panel discussion. First, to be successful, AI will need to work seamlessly, and in an integrated manner with humans (and vice versa). Second, significant gaps in the infrastructure needed to enable the full potential of AI into the manufacturing ecosystem, including sufficient data availability, storage, and analysis, must be addressed. And finally, improved coordination between universities, industry, and government agencies can facilitate greater opportunities to push the field forward. This article briefly summarizes these three themes, and concludes with a discussion of promising directions.


ETL Data Analyst at Verisk - Jersey City, NJ, United States

#artificialintelligence

We help the world see new possibilities and inspire change for better tomorrows. Our analytic solutions bridge content, data, and analytics to help business, people, and society become stronger, more resilient, and sustainable. At the heart of what we do is help clients manage risk. Verisk (Nasdaq: VRSK) provides data and insights to our customers in insurance, energy and the financial services markets so they can make faster and more informed decisions. Our global team uses AI, machine learning, automation, and other emerging technologies to collect and analyze billions of records.


ep.359: Perception and Decision-Making for Underwater Robots, with Brendan Englot

Robohub

Brendan Englot received his S.B., S.M., and Ph.D. degrees in mechanical engineering from the Massachusetts Institute of Technology in 2007, 2009, and 2012, respectively. He is currently an Associate Professor with the Department of Mechanical Engineering at Stevens Institute of Technology in Hoboken, New Jersey. At Stevens, he also serves as interim director of the Stevens Institute for Artificial Intelligence. He is interested in perception, planning, optimization, and control that enable mobile robots to achieve robust autonomy in complex physical environments, and his recent work has considered sensing tasks motivated by underwater surveillance and inspection applications, and path planning with multiple objectives, unreliable sensors, and imprecise maps.



Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Use of machine learning in geriatric clinical care for chronic diseases: a systematic literature review

arXiv.org Artificial Intelligence

Objectives-Geriatric clinical care is a multidisciplinary assessment designed to evaluate older patients (age 65 years and above) functional ability, physical health, and cognitive wellbeing. The majority of these patients suffer from multiple chronic conditions and require special attention. Recently, hospitals utilize various artificial intelligence (AI) systems to improve care for elderly patients. The purpose of this systematic literature review is to understand the current use of AI systems, particularly machine learning (ML), in geriatric clinical care for chronic diseases. Materials and Methods-We restricted our search to eight databases, namely PubMed, WorldCat, MEDLINE, ProQuest, ScienceDirect, SpringerLink, Wiley, and ERIC, to analyze research articles published in English between January 2010 and June 2019. We focused on studies that used ML algorithms in the care of geriatrics patients with chronic conditions. Results-We identified 35 eligible studies and classified in three groups-psychological disorder (n=22), eye diseases (n=6), and others (n=7). This review identified the lack of standardized ML evaluation metrics and the need for data governance specific to health care applications. Conclusion- More studies and ML standardization tailored to health care applications are required to confirm whether ML could aid in improving geriatric clinical care.